
PRESENTS

Cilium Fuzzing Audit
In collaboration with the Cilium project maintainers and The Linux Foundation

Authors
Adam Korczynski <adam@adalogics.com>
David Korczynski <david@adalogics.com>
Date: 13th February, 2023

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

1

mailto:adam@adalogics.com
mailto:david@adalogics.com

Cilium Fuzzing Audit, 2022

CNCF security and fuzzing audits
This report details a fuzzing audit commissioned by the CNCF and the engagement is part
of the broader efforts carried out by CNCF in securing the so�ware in the CNCF landscape.
Demonstrating and ensuring the security of these so�ware packages is vital for the CNCF
ecosystem and the CNCF continues to use state of the art techniques to secure its projects
as well as carrying out manual audits. Over the last handful of years, CNCF has been
investing in security audits, fuzzing and so�ware supply chain security that has helped
proactively discover and fix hundreds of issues.

Fuzzing is a proven technique for finding security and reliability issues in so�ware and the
efforts so far have enabled fuzzing integration into more than twenty CNCF projects
through a series of dedicated fuzzing audits. In total, more than 350 bugs have been found
through fuzzing of CNCF projects. The fuzzing efforts of CNCF have focused on enabling
continuous fuzzing of projects to ensure continued security analysis, which is done by way
of the open source fuzzing project OSS-Fuzz1.

CNCF continues work in this space and will further increase investment to improve
security across its projects and community. The focus for future work is integrating fuzzing
into more projects, enabling sustainable fuzzer maintenance, increasing maintainer
involvement and enabling fuzzing to find more vulnerabilities in memory safe languages.
Maintainers who are interested in getting fuzzing integrated into their projects or have
questions about fuzzing are encouraged to visit the dedicated cncf-fuzzing repository
https://github.com/cncf/cncf-fuzzing where questions and queries are welcome.

1 https://github.com/google/oss-fuzz

2

https://github.com/cncf/cncf-fuzzing
https://github.com/google/oss-fuzz

Cilium Fuzzing Audit, 2022

Executive summary
In this engagement, Ada Logics worked on improving Ciliums fuzzing suite. At the time of this
engagement, Cilium was already integrated into OSS-Fuzz, and the goal of this fuzzing audit was to
build upon this integration and improve the fuzzing efforts in a continuous manner.

The fuzzing audit added fuzzers for a lot of data processing APIs that found a number of different
issues in Cilium and its dependencies. None of the issues were considered critical, however, they
revealed some issues in Cilium that prompted rewrites and deprecation of some packages
throughout the source tree.

Prior to this engagement, Ciliums OSS-Fuzz integration was set up in manner where the fuzzers
and the OSS-Fuzz build script were located in Ciliums own repository2. In this fuzzing audit, most
development of the fuzzers was carried out in the CNCF-Fuzzing repository,
https://github.com/cncf/cncf-fuzzing/tree/main/projects/cilium. This allowed the Ada Logics team
to make smaller iterations of the fuzzers throughout the audit and avoid imposing the overhead of
having the Cilium maintainers review trivial changes to the fuzzers. OSS-Fuzz was instructed to pull
the fuzzers from CNCF-Fuzzing in addition to the fuzzers from Ciliums repository.

Results summarised
14 fuzzers developed

All fuzzers added to Ciliums OSS-Fuzz integration

All fuzzers supported by Ciliums CIFuzz integration

8 crashes were found.
● 5 cases of excessive memory allocation
● 1 index out of range
● 1 time out
● 1 nil-dereference

2 https://github.com/cilium/cilium/blob/master/test/fuzzing/oss-fuzz-build.sh

3

https://github.com/cncf/cncf-fuzzing/tree/main/projects/cilium
https://github.com/cilium/cilium/blob/master/test/fuzzing/oss-fuzz-build.sh

Cilium Fuzzing Audit, 2022

Table of Contents

CNCF security and fuzzing audits 2

Executive summary 3

Table of Contents 4

Cilium fuzzing 5

Issues found by fuzzers 9

Runtime stats 19

Conclusions and future work 20

4

Cilium Fuzzing Audit, 2022

Cilium fuzzing
In this section we present details on the Cilium fuzzing set up, and in particular the overall
fuzzing architecture as well as the specific fuzzers developed.

Architecture
A central component in the Cilium approach to fuzzing is continuous fuzzing by way of
OSS-Fuzz. The Cilium source code and the source code for the Cilium fuzzers are the two
key so�ware packages that OSS-Fuzz uses to fuzz Cilium. The following figure gives an
overview of how OSS-Fuzz uses these two packages and what happens when an issue is
found/fixed.

Figure 1.1: Ciliums fuzzing architecture

The current OSS-Fuzz set up builds the fuzzers by cloning the upstream Cilium Github
repository to get the latest Cilium source code and the CNCF-Fuzzing Github repository to
get the latest set of fuzzers, and then builds the fuzzers against the cloned Cilium code. As
such, the fuzzers are always run against the latest Cilium commit.

5

Cilium Fuzzing Audit, 2022

This build cycle happens daily and OSS-Fuzz will verify if any existing bugs have been
fixed. If OSS-fuzz finds that any bugs have been fixed OSS-Fuzz marks the crashes as fixed
in the Monorail bug tracker and notifies maintainers.

In each fuzzing iteration, OSS-Fuzz uses its corpus accumulated from previous fuzz runs. If
OSS-Fuzz detects any crashes when running the fuzzers, OSS-Fuzz performs the following
actions:

1. A detailed crash report is created.
2. An issue in the Monorail bug tracker is created.
3. An email is sent to maintainers with links to the report and relevant entry in the

bug tracker.

OSS-Fuzz has a 90 day disclosure policy, meaning that a bug becomes public in the bug
tracker if it has not been fixed. The detailed report is never made public. The Cilium
maintainers will fix issues upstream, and OSS-Fuzz will pull the latest Cilium master
branch the next time it performs a fuzz run and verify that a given issue has been fixed.

Cilium Fuzzers
In this section we present a highlight of the Cilium fuzzers and which parts of Cilium they
test. In total, 14 fuzzers were written during the fuzzing audit.

Overview

Name Package

1 FuzzLabelsfilterPkg cilium/pkg/labelsfilter

2 FuzzDecodeTraceNotify cilium/pkg/monitor

3 FuzzFormatEvent cilium/pkg/monitor

4 FuzzPayloadEncodeDecode cilium/pkg/monitor/payload

5 FuzzElfOpen cilium/pkg/elf

6 FuzzElfWrite cilium/pkg/elf

7 FuzzMatchpatternValidate cilium/pkg/fqdn/matchpattern

8 FuzzMatchpatternValidateWithoutCache cilium/pkg/fqdn/matchpattern

9 FuzzParserDecode cilium/pkg/hubble/parser

10 FuzzLabelsParse cilium/pkg/k8s/slim/k8s/apis/labels

11 FuzzMultipleParsers cilium/proxylib/cassandra

12 FuzzConfigParse cilium/pkg/bgp/config

6

Cilium Fuzzing Audit, 2022

13 FuzzNewVisibilityPolicy cilium/pkg/policy

14 FuzzBpf cilium/pkg/bpf

Target APIs
1: FuzzLabelsfilterPkg
Tests that ParseLabelPrefixCfg() and Filter() APIs of the labelsfilter package.

2: FuzzDecodeTraceNotify
Passes an empty &TraceNotify{} and a pseudo-random byte slice to
DecodeTraceNotify().

3: FuzzFormatEvent
Creates a pseudo-random &Payload{} and passes it to (m

*MonitorFormatter).FormatEvent().

4: FuzzPayloadEncodeDecode
Decodes a Payload{} with a pseudo-random byte slice.

5: FuzzElfOpen
Creates a file with data provided by the fuzzer and opens it by way of
github.com/cilium/cilium/pkg/elf.Open().

6: FuzzElfWrite
Creates a new Elf and writes pseudo-random data to it.

7: FuzzMatchpatternValidate
Passes a pseudo-random string to
github.com/cilium/cilium/pkg/fqdn/matchpattern.Validate().

8: FuzzMatchpatternValidateWithoutCache
Passes a pseudo-random string to
github.com/cilium/cilium/pkg/fqdn/matchpattern.Validate().

9: FuzzParserDecode
Instantiates a Hubble parser. It then creates a MonitorEvent and assigns either a
PerfEvent, AgentEvent or a LostEvent to the MonitorEvent’s Payload. Finally the
fuzzer calls github.com/cilium/cilium/pkg/hubble/parser.(p
*Parser).Decode(), passing the MonitorEvent.

7

Cilium Fuzzing Audit, 2022

10: FuzzLabelsParse
Passes a pseudo-random string to
github.com/cilium/cilium/pkg/k8s/slim/k8s/apis/labels.Parse().

11: FuzzMultipleParsers
Starts a log server, inserts a pseudo-random policy text, creates a new proxylib connection
and calls OnData() against the connection. When creating the connection, the fuzzer
chooses between the Cassandra, Kafka, R2d2 or Memcache parsers.

12: FuzzConfigParse
Passes the fuzzing testcase to the bgp configuration parser.

13: FuzzNewVisibilityPolicy
Creates a VisibilityPolicy using the fuzz testcase as the annotation parameter.

14: FuzzBpf
Creates two files, a “bpffFile” and an “elfFile”. Pseudo-random data is written to each file.
The fuzzer then calls either StartBPFFSMigration() or
FinalizeBPFFSMigration(). If it calls FinalizeBPFFSMigration() it may set the
revert argument to true.

8

Cilium Fuzzing Audit, 2022

Issues found by fuzzers
A total of 8 unique crashes were reported during the audit. All crashes were triaged by the
Cilium team who tracked the issues internally. The issues are as follows:

Title Mitigation

1 Cilium Monitor: Out of memory when decoding
specific payload data

Close: WontFix

2 Cilium Monitor: index out of range Close: WontFix

3 Cilium Monitor: Out of memory panic Close: WontFix

4 Excessive processing time required for rules with
long DNS namesFuzzPayloadEncodeDecode

Improve Cilium limits on
matchpattern

5 Excessive memory allocation when parsing MetalLB
configuration

Deprecate feature

6 Excessive memory usage when loading and writing
ELF file

Avoid reading/writing ELFs
as part of datapath load

7 Excessive memory consumption when reading bytes
of bpf_elf_map

Avoid reading/writing ELFs
as part of datapath load

8 Hubble: nil-dereference in three-four parser Check if nil before reading

Issue 1-3 were closed as WontFixʼes. These were true, reproducible crashes, but triaging
showed that they did not have impact on real-world use cases.
Public Github issues were created for issue 4, 5 and 6 to fix at a future date.
Issue 7 and 8 were fixed in Cilium.

9

Cilium Fuzzing Audit, 2022

1: Cilium Monitor: Out of memory when decoding specific
payload data

OSS-Fuzz bug tracker: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49119

Mitigation: Close: WontFix

ID: ADA-CIL-FUZZ-1

Description
A fuzzer found that a well-cra�ed payload data byte slice could cause excessive memory
consumption of the host machine.

OSS-Fuzz took the following steps to trigger the crash. Note that this happened inside the
OSS-Fuzz environment which has a maximum of 2560Mb memory available:

1

2

3

4

5

6

7

8

9

10

11

package payload

import (

"testing"

)

func TestPoC(t *testing.T) {

data := []byte{251, 0, 99, 255, 255, 6}

pl := &Payload{}

pl.Decode(data)

}

Figure 1.1: Proof of concept payload to trigger issue ADA-CIL-FUZZ-1

… which resulted in allocating 3737Mb of memory that OSS-Fuzz reported as an
out-of-memory issue:

0
1
2
3
4
5
6
7
8
9
10

==13== ERROR: libFuzzer: out-of-memory (used: 3336Mb; limit: 2560Mb)
To change the out-of-memory limit use -rss_limit_mb=<N>

Live Heap Allocations: 24124699 bytes in 32 chunks; quarantined: 44415 bytes in 46 chunks; 7488 other chunks; total
chunks: 7566; showing top 95% (at most 8 unique contexts)
24120888 byte(s) (99%) in 11 allocation(s)

#0 0x52ef96 in __interceptor_malloc /src/llvm-project/compiler-rt/lib/asan/asan_malloc_linux.cpp:69:3
#1 0x4ad997 in operator new(unsigned long) cxa_noexception.cpp
#2 0x458342 in main /src/llvm-project/compiler-rt/lib/fuzzer/FuzzerMain.cpp:20:10
#3 0x7f6e83556082 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x24082) (BuildId:

1878e6b475720c7c51969e69ab2d276fae6d1dee)

Figure 1.2: Stacktrace from running the test case against the Cilium code base.

The function where this issue may be triggered is run from the "cilium monitor" command,
which may be invoked inside the Cilium container by a privileged user. Cilium exercises
control over the generation and processing of these messages, so the likelihood of
malformed input is low. The impacted component is not a long-running process so there is
no expected availability or observability impact. As a consequence of this, the issue will be
closed without a fix.

10

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49119

Cilium Fuzzing Audit, 2022

2: Cilium Monitor: index out of range

OSS-Fuzz bug tracker: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49723

Mitigation: Close: WontFix

ID: ADA-CIL-FUZZ-2

Description
An index out of range panic in Golangs gob package was triggerable from Ciliums payload
package when decoding a Payload with a particularly well-crafted testcase.

Proof of concept
The following test reproduces the issue. The key lines are 8 and 10, where line 8 contains
the payload and line 10 the entry point that causes the panic. The data produced on line 8
corresponds to the data generated by the fuzzer.

1

2

3

4

5

6

7

8

9

10

11

12

package payload

import (

"testing"

)

func TestPoC(t *testing.T) {

data := []byte{18, 127, 255, 2, 0, 248, 127, 255, 255, 255, 255,

255, 255, 255, 255, 255, 25, 67, 36}

pl := &Payload{}

pl.Decode(data)

}

Figure 2.1: Proof of concept payload to trigger issue ADA-CIL-FUZZ-2

To reproduce the issue the above test can be run against Cilium main branch commit
b4794d690b5690d70c074bffd1db7593e3938e65 by placing the test inside the
pkg/monitor/payload directory:

1

2

3

4

git clone https://github.com/cilium/cilium

cd cilium

git checkout b4794d690b5690d70c074bffd1db7593e3938e65

cd pkg/monitor/payload

Figure 2.2: Extracting the relevant commit of Cilium to reproduce ADA-CIL-FUZZ-2

Create the test as poc_test.go with the contents of the test above and then run go test

-run=TestPoC. You should get the following stacktrace:

11

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49723

Cilium Fuzzing Audit, 2022

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

panic: runtime error: index out of range [-9223372036854775808] [recovered]
panic: runtime error: index out of range [-9223372036854775808] [recovered]
panic: runtime error: index out of range [-9223372036854775808]

goroutine 19 [running]:
testing.tRunner.func1.2({0x653040, 0xc00015e048})

/usr/local/go/src/testing/testing.go:1396 +0x24e
testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1399 +0x39f
panic({0x653040, 0xc00015e048})

/usr/local/go/src/runtime/panic.go:884 +0x212
encoding/gob.catchError(0xc00016c1f0)

/usr/local/go/src/encoding/gob/error.go:38 +0x6d
panic({0x653040, 0xc00015e048})

/usr/local/go/src/runtime/panic.go:884 +0x212
encoding/gob.(*Decoder).decodeStruct(0xc00016c180?, 0xc00015c180, {0x655440?, 0xc0001ae0c0?, 0x4ec2ef?})

/usr/local/go/src/encoding/gob/decode.go:462 +0x2cc
encoding/gob.(*Decoder).decodeValue(0xc00016c180, 0x485f0?, {0x62bc00?, 0xc0001ae0c0?, 0xc00016c198?})

/usr/local/go/src/encoding/gob/decode.go:1210 +0x24e
encoding/gob.(*Decoder).recvType(0xc00016c180, 0x40)

/usr/local/go/src/encoding/gob/decoder.go:67 +0x13c
encoding/gob.(*Decoder).decodeTypeSequence(0xc00016c180, 0x0)

/usr/local/go/src/encoding/gob/decoder.go:164 +0x7b
encoding/gob.(*Decoder).DecodeValue(0xc00016c180, {0x644540?, 0xc000115230?, 0x8?})

/usr/local/go/src/encoding/gob/decoder.go:225 +0x18f
encoding/gob.(*Decoder).Decode(0xc00016c180, {0x644540?, 0xc000115230?})

/usr/local/go/src/encoding/gob/decoder.go:202 +0x165
github.com/cilium/cilium/pkg/monitor/payload.(*Payload).DecodeBinary(...)

/tmp/cilium/pkg/monitor/payload/monitor_payload.go:98
github.com/cilium/cilium/pkg/monitor/payload.(*Payload).ReadBinary(0x5007b4?, {0x6bc800?, 0xc000115260?})

/tmp/cilium/pkg/monitor/payload/monitor_payload.go:82 +0x3f
github.com/cilium/cilium/pkg/monitor/payload.(*Payload).Decode(...)

/tmp/cilium/pkg/monitor/payload/monitor_payload.go:65
github.com/cilium/cilium/pkg/monitor/payload.TestPOC(0x0?)

/tmp/cilium/pkg/monitor/payload/pl_test.go:10 +0xad

Figure 2.3: Stacktrace from running the test case against the Cilium code base.

This issue has been closed without a fix for the same reasons as ADA-CIL-FUZZ-1.

12

Cilium Fuzzing Audit, 2022

3: Cilium Monitor: Out of memory panic

OSS-Fuzz bug tracker https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53070

Mitigation Close: WontFix

ID: ADA-CIL-FUZZ-3

Description
FuzzFormatEvent found a crash when a well-crafted Payload would be passed to (m

*MonitorFormatter).FormatEvent().

The vulnerable payload json was: {"Data":"gvsB/yAgIA==","CPU":32,"Lost":32,"Type":9}

OSS-Fuzz took the following steps to trigger the crash. Note that this happened inside the
OSS-Fuzz environment which has a maximum of 2560Mb memory available:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

package main

import (

"github.com/cilium/cilium/pkg/monitor/format"

"github.com/cilium/cilium/pkg/monitor/payload"

)

func main() {

pl := &payload.Payload{

Data: []byte("gvsB/yAgIA=="),

CPU: 32,

Lost: uint64(32),

Type: 9,

}

mf := format.NewMonitorFormatter(0, nil)

mf.FormatEvent(pl)

}

Figure 3.0: Sample program that triggered the out-of-memory issue,
inside the OSS-Fuzz environment

… which resulted in allocating 3797Mb of memory that OSS-Fuzz reported as an
out-of-memory issue:

0
1
2
3
4
5
6
7
8
9
10

==13== ERROR: libFuzzer: out-of-memory (used: 3797Mb; limit: 2560Mb)
To change the out-of-memory limit use -rss_limit_mb=<N>

Live Heap Allocations: 24131934 bytes in 41 chunks; quarantined: 142310 bytes in 56 chunks; 9911 other chunks; total
chunks: 10008; showing top 95% (at most 8 unique contexts)
24120824 byte(s) (99%) in 9 allocation(s)

#0 0x52efb6 in __interceptor_malloc /src/llvm-project/compiler-rt/lib/asan/asan_malloc_linux.cpp:69:3
#1 0x4ad9b7 in operator new(unsigned long) cxa_noexception.cpp
#2 0x458362 in main /src/llvm-project/compiler-rt/lib/fuzzer/FuzzerMain.cpp:20:10
#3 0x7f92b5028082 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x24082) (BuildId:

1878e6b475720c7c51969e69ab2d276fae6d1dee)

Figure 3.1: Stack trace reported by OSS-Fuzz

This issue has been closed without a fix for the same reasons as ADA-CIL-FUZZ-1 and
ADA-CIL-FUZZ-2.

13

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53070

Cilium Fuzzing Audit, 2022

4: Excessive processing time required for rules with long DNS
names

OSS-Fuzz bug tracker: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49019

Mitigation: Improve Cilium limits on matchpattern

ID: ADA-CIL-FUZZ-4

Description
A fuzzer found that a well-crafted payload passed to
github.com/cilium/cilium/pkg/fqdn/matchpattern.ValidateWithoutCache() would
cause Cilium to spend excessive time on a single process. The issue was reported by
OSS-Fuzz as a time-out from spending 61 seconds on a single invocation of
ValidateWithoutCache().

The time-out happens when Cilium passes the testcase onto regexp.Compile(TESTCASE).
Cilium does this without checking the length of the input, and a long input string can make
Cilium spend excessive time on a single invocation. To trigger the crash, the fuzzer had
generated a string longer than 70,000 bytes.

The issue was triaged by the Cilium team, and an issue has been opened here:
https://github.com/cilium/cilium/issues/21491

The input to this function is first submitted to the Kubernetes apiserver and stored in a Custom
Resource field. This requires a high level of privileges to insert. Furthermore, Kubernetes typically
imposes various limits on such fields and on the size of the entire resource objects, so it is
possible that it is rejected before it reaches this point. Kubernetes will only then forward the
object to Cilium for Cilium to then process this object with the code being fuzzed in this scenario.

Due to these mitigating factors, the Cilium maintainers do not consider this to be likely to occur
in a real user environment. That said, improvements can be made in the Cilium tree which is why
the above Github issue has been created.

14

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49019
https://github.com/cilium/cilium/issues/21491

Cilium Fuzzing Audit, 2022

5: Excessive memory allocation when parsing MetalLB
configuration

OSS-Fuzz bug tracker ● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
1786

● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
3059

Mitigation Deprecate feature

ID: ADA-CIL-FUZZ-5

Description
A fuzzer that tests the 3rd-party metallb config parser found that it is possible to cause
excessive memory consumption of the host machine if a well-crafted config file was being
parsed.

The parsing routine failed at 2 different places, one in Cilium itself and one in the 3rd-party
library handling the parsing.

The found issues have prompted a discussion around deprecating MetalLB support instead
of fixing the issue in the 3rd-party dependency itself:
https://github.com/cilium/cilium/issues/22246

15

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=51786&q=proj%3Dcilium
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=51786&q=proj%3Dcilium
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53059&q=proj%3Dcilium
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53059&q=proj%3Dcilium
https://github.com/cilium/cilium/issues/22246

Cilium Fuzzing Audit, 2022

6: Excessive memory usage when loading and writing ELF file

OSS-Fuzz bug tracker: ● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
1731

● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
2981

● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
3015

● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=5
3066

Mitigation: Avoid reading/writing ELFs as part of datapath load

ID: ADA-CIL-FUZZ-6

Description
A fuzzer that Ciliums reading and writing routines of ELF files could trigger both an
out-of-memory panics as well as a time-out from excessive processing time on a single elf
file. The root cause is an issue in Golang which is well known to the Golang maintainers. In
Golang, it is not considered a security vulnerability issue in Golang itself due to the intended
usage of the elf package.

To trigger the issue, the fuzzer creates a file containing the test case. It then invokes
github.com/cilium/cilium/pkg/elf.Open() with the path to the created file. Open()
reads the file and passes the file contents onto
github.com/cilium/cilium/pkg/elf.NewELF() which passes the file contents onto
debug/elf.NewFile() in the standard library where the crash happens.

Cilium issue: https://github.com/cilium/cilium/issues/22245

Significant local privileges are required to invoke this bug, so this is not considered a security
concern by the Cilium core team. The Cilium maintainers have longer term plans to remove
this code, and this will be addressed as part of that effort.

16

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=51731&q=proj%3Dcilium
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=51731&q=proj%3Dcilium
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=52981&q=proj%3Dcilium
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=52981&q=proj%3Dcilium
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53015&q=proj%3Dcilium
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53015&q=proj%3Dcilium
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53066&q=proj%3Dcilium
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=53066&q=proj%3Dcilium
https://github.com/cilium/cilium/issues/22245

Cilium Fuzzing Audit, 2022

7: Excessive memory consumption when reading bytes of
bpf_elf_map

OSS-Fuzz bug tracker ● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=
48961

Mitigation Avoid reading/writing ELFs as part of datapath load

ID: ADA-CIL-FUZZ-7

Description
github.com/cilium/cilium/pkg/bpf.parseExtra() parses extra bytes from the end of a
bpf_elf_map struct. A fuzzer was able to invoke this method by calling
StartBPFFSMigration and FinalizeBPFFSMigration.
The issue was fixed by removing the parseExtra() api altogether:
https://github.com/cilium/cilium/pull/19159.

17

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=48961
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=48961
https://github.com/cilium/cilium/pull/19159

Cilium Fuzzing Audit, 2022

8: Hubble: nil-dereference in three-four parser

OSS-Fuzz bug tracker ● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=
48960

● https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=
48957

Mitigation Check if nil before reading

ID: ADA-CIL-FUZZ-8

Description
Two nil-dereference panics were discovered in the Hubble three-four parser when accessing a field
of (*Parser).linkGetter. At the time of occurrence, the crash would not be triggerable
through any existing code paths of Ciliums and was considered a cosmetic change. The fuzzer
created the parser through Ciliums own constructor and passed nil for all getters.

cilium/pkg/monitor/datapath_debug.go

254

255

256

257

case DbgEncap:

return fmt.Sprintf("Encapsulating to node %d (%#x) from seclabel %d",

n.Arg1, n.Arg1, n.Arg2)

case DbgLxcFound:

ifname := linkMonitor.Name(n.Arg1)

Figure 8.1: Point of failure of ADA-CIL-Fuzz-8

cilium/pkg/monitor/datapath_debug.go

664

665

666

667

668

669

return nil

}

// if the interface is not found, `name` will be an empty string and thus

// omitted in the protobuf message

name, _ := p.linkGetter.GetIfNameCached(int(ifIndex))

Figure 8.2: Point of failure of ADA-CIL-Fuzz-8

Fix: https://github.com/cilium/cilium/pull/20446

18

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=48960
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=48960
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=48957
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=48957
https://github.com/cilium/cilium/pull/20446

Cilium Fuzzing Audit, 2022

Runtime stats
Continuity is an important element in fuzzing because fuzzers incrementally build up a
corpus over time, therefore, the size of the corpus is a reflection of how much code the
fuzzer has explored. OSS-Fuzz prioritises running fuzzers that continue to explore more
code, and the CPU time presented by OSS-Fuzz runtime stats is thus a reflection of how
much work the fuzzers have performed. The following tables lists for each fuzzer3 the
amounts of tests executed as well as the total CPU hours devoted:

Name Total times executed Total runtime (hours)

FuzzLabelsfilterPkg 280,380,108 1,332.7

FuzzDecodeTraceNotify 69,256,225,259 4,816.5

FuzzFormatEvent 63,743,550 129

FuzzPayloadEncodeDecode 1,689,825 245.2

FuzzElfOpen 72,033,696 224.2

FuzzElfWrite 28,824,726 135

FuzzMatchpatternValidate 9,814,975,456 5,146

FuzzMatchpatternValidateWithoutCache 1,250,359,477 7,492

FuzzParserDecode 59,149,192,095 6,927.5

FuzzLabelsParse 2,607,448,955 13,693.5

FuzzMultipleParsers 74,524 6.9

FuzzConfigParse 1,194,473,623 6,805.3

FuzzNewVisibilityPolicy 8,817,227,390 3,379.4

FuzzBpf 205,251,069 12.8

3 As per 6th December 2022.

19

Cilium Fuzzing Audit, 2022

Conclusions and future work
This fuzzing audit added 14 fuzzers to the Cilium projects. A total of 8 issues were found
and at the time of this writing 5 of these issues have been fixed where 3 of the issues are
declared WontFix. The fuzzers were added to Ciliums OSS-Fuzz integration, so that they
continue to test Cilium for hard-to-find bugs as well as new code. OSS-Fuzz will
periodically pull the latest master of Cilium and run the fuzzers against that version of the
source tree.

As this fuzzing audit concludes, it is important to highlight that fuzzing is a continuous
effort and that the fuzzers should continue to run through Ciliums OSS-Fuzz integration.
Some bugs may take a long time to find, and to allow the fuzzers to get deep into the code
base, and it is imperative that the fuzzers keep running for that purpose.

For future work we recommend the following activities to the Cilium team:

Improve Ciliums testability: It may happen that some fuzzers find false positives that
theoretically are bugs but cannot be triggered in any execution path to the part of the code
where the crash occurs. This was the case with issue #8 of this fuzzing audit that sparked a
discussion about what to do in these cases for Cilium. An excellent point was made by
Cilium maintainer Joe Stringer who argued that false positives may be a sign that Cilium
should improve its testability:
https://github.com/cilium/cilium/pull/20446#discussion_r919120926. This is a great
observation that also highlights the importance of continuity in fuzzing; Some crashes
required multiple development iterations of both fuzzers and the code base itself in order
to fully utilize the capabilities of fuzzing, and continuously improving both sides is
important.

Improve coverage: We recommend making it a continuous effort to identify missing test
coverage of the fuzzers. This can be done using the code coverage visualisations provided
by OSS-Fuzz.

Require fuzzers for new code: The Cilium community does a good job in adding unit tests
to new code contributions, and we recommend that Cilium makes a policy out of adding
fuzzers in addition to unit tests. The overhead for writing fuzzers in addition to unit tests in
Go is low, since Go has its own fuzzing engine that makes writing unit tests and fuzzers a
similar experience: https://go.dev/security/fuzz/.

20

https://github.com/cilium/cilium/pull/20446#discussion_r919120926
https://go.dev/security/fuzz/

